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I. INTRODUCTION

With the growing prevalence of personalized content and
an advertising based Internet economy, users are being increas-
ingly tracked across website visits with the purpose of creating
accurate interest and demographic profiles. These profiles
are then used to serve targeted content and advertisements.
Online data aggregrators are always developing new tracking
mechanisms to obtain more fine-grained information and such
aggressive tracking had led to numerous privacy concerns. To
help protect user privacy, privacy champions keep building
privacy preserving tools to thwart trackers. This arms race
between tracking tools and privacy tools is exemplified by the
steady stream of studies detecting new forms of tracking and
proposing defenses [1]–[3].

Privacy preserving tools like DoNotTrack, opt-out cookies,
Ghostery, Privacy Badger, AdBlockPlus, Tor, etc., all aim to
improve user privacy by blocking tracking. Some of these tools
have been studied in the past to check for their effectiveness
against online behavioral advertising [4] and HTTP requests
and cookies set [5]. However, these studies lack statistical
guarantees and have no means to discover effects of track-
ing other than those stipulated in advance. Moreover, many
new tools and tracking mechanisms (like fingerprinting) have
become prevalent since these studies were published.

In this poster, we measure the effectiveness of some of
the most popular privacy preserving tools in the face of newer
tracking mechanisms. To include statistical rigor and not be
restricted to discovering only pre-decided effects, we use the
methodology used in AdFisher [6]. These methods are an
application of the general information flow experiment (IFE)
methods [7] to study the Google Ad System. We first perform
an empirical completeness evaluation of the methods used in
AdFisher and then design and run experiments using AdFisher
to evaluate the effectiveness of privacy tools.

II. INFORMATION FLOW EXPERIMENTS

Tschantz et al. [7] show that information flow is a causal
relationship and use randomized controlled experiments to
establish causation. They use the permutation test, which tests
for a null hypothesis stating that outputs from the experimental
and control units are drawn from the same distribution. If
the resulting p-value is smaller than the significance criterion
(α), then they reject the null hypothesis, thereby concluding
the presence of information flow. In their experiments on
the Google Ad System, Datta et al. [6] used α=0.05, which
indicates that their test would lead to unsound conclusions at

most 5% of the time.1

Additionally, it is also important for a test to be powerful.
The power of a statistical test is the probability that it correctly
rejects the null hypothesis, when the null hypothesis is indeed
false. The prior methodology for IFEs lacks power analysis,
thereby lacking any completeness evaluation.

III. EMPIRICAL COMPLETENESS EVALUATION

The soundness and completeness of information flow ex-
periments relies on the type-I (false-positive) and type-II (false-
negative) error rates of the underlying statistical test. The
maximum acceptable type-I error rate is denoted by α, which
is a measure of the unsoundness of the test. The completeness
of a test is quantified by power, given by 1−β, where β is the
type-II error rate.

To empirically estimate the type-I and type-II errors of
information flow experiments, we use Monte-Carlo simula-
tions. Monte-Carlo simulations have been successfully used
to estimate power for non-parametric tests [8]. In such Monte-
Carlo methods, one first simulates populations so as to intro-
duce a pre-determined effect. Thereafter, samples are drawn
from the populations and the test performed on the datasets
to check if the null hypothesis is rejected or not. This is
repeated for a large number of iterations. If the effect size
is set to zero, the proportion of iterations where the test
incorrectly rejects the null hypothesis gives an estimate of type-
I error rate. Similarly, by setting the effect-size to a non-zero
value, the proportion where the test correctly rejects the null
hypothesis gives an estimate of power (completeness rate). We
use Cohen’s percent nonoverlap (pno) as a measure of effect
size [9]. The pno of two distributions is the area under the two
distributions that overlap as a ratio of the total area under the
two distributions. For example, if the distributions are identical,
then pno = 100%.

Using Monte-Carlo simulations, we perform an empirical
soundness and completeness analysis of AdFisher instanti-
ated with the permutation test and the automatically selected
classifier-based test statistic. We limit the number of unique
features to 1000 and the total features observed by each unit
to 50, in accordance with their experiments, and compute
estimates over different distributions over the features. We
cover a range of distributions starting from the basic ones to
more complex and noisy versions. For soundness, we expect
a type-I error estimate of at most 5%, since we select a
significance criterion of 0.05. We estimate the type-I errors by
averaging over 100 Monte-Carlo simulations, each at different

1They apply Holm-Bonferroni correction to address multiple comparisons.



TABLE I. SOUNDNESS AND COMPLETENESS ESTIMATIONS

Soundness Completeness
Distribution Type-I error Effect size (pno) Samples
Poisson 0.022 > 20% 40
Poisson 0.013 > 26% 40
with 5% noise
Normal 0.02 > 5% 40

when means differ
< 50% -

when means do not differ

instantiations of the distributions (for example at 6 randomly
selected values of the parameter λ for the Poisson distribu-
tion). We find that the empirical type-I error matches the set
significance criterion, thereby providing a sanity check for the
Monte-Carlo simulations. Table I shows our results.

As for completeness, we estimate how small of an effect
size the tests can detect with a power of at least 95% for a
reasonable number of samples. For the Poisson distributions,
with just 40 samples, effect sizes as low as 20% are detected.
For normal distributions with mean differences, 40 samples are
enough to detect effect sizes as small as 5%. However, with
only differences in the variance, even 340 samples achieved
power levels of just 5%. This points out that the default
instantiation of AdFisher is incapable of detecting differences
in variance, likely because it trains a linear classifier. Thus,
AdFisher is able to detect effect sizes as small as 26% for
these distributions, if the differences are linear in nature.

IV. EXPERIMENTS

Design. To measure the effectiveness of privacy tools, we
perform experiments comparing four treatment groups. The
first treatment group (A) does not visit any website or install
any privacy tool. The second treatment group (B) visits certain
websites in order to induce a behavioral profile, but does not
install any privacy tool. The third treatment group (C) visits
the same websites as group B, as well as installs a privacy tool.
The fourth treatment group (D) does not visit any websites,
but just installs the privacy tool. Table II shows the different
treatments. Once the treatments are applied, all the browsers
collect ads from a third-party news website.

By observing a significant difference between A and B
(i.e. p(A,B) < 0.05), we can conclude that website visits
have a significant impact on the content, thereby indicating that
visiting the websites leads to a behavioral profile being created
and used to serve targeted content. By comparing B and C,
we can evaluate if having a privacy tool installed has any
significant effect on the measurements. We consider a tool to
be soundly effective if p(B,C) < 0.05. We consider a privacy
tool to be completely effective, if, in addition, p(C,D) ≥ 0.05.
We clarify that finding no difference does not guarantee that C
and D does not have any difference, rather AdFisher’s linear
classifier is not able to find any consistent difference. We
have empirically shown that Adfisher can detect pretty small
differences in Section III. The complete effectiveness of the
tool is with respect to AdFisher’s detection methods.

If, however, we continue to find a significant difference
between C and D, this would demonstrate that the privacy tool
is not completely effective, and visiting websites still has some
impact on recommended outputs in spite of using privacy tools.

TABLE II. EXPERIMENTAL TREATMENTS

Treatment A Treatment B Treatment C Treatment D
¬ Visit sites Visit sites Visit sites ¬ Visit sites
¬ Privacy tool ¬ Privacy tool Privacy tool Privacy tool

TABLE III. EVALUATION OF PRIVACY TOOLS

Privacy Tool p(A,B) p(B,C) p(C,D) Conclusion
AdBlockPlus 0.022 0.004 0.062 Completely effective
Ghostery 0.064 0.141 0.936 Inconclusive

The elements of difference would point us to what outputs are
being targeted.

Results. We evaluated AdBlockPlus and Ghostery in our
experiments. We visited sites about automobiles and collected
text ads served by Google on bbc.com/news. Table III shows
the p-values from comparing the pair of treatments (A,B),
(B,C), and (C,D) for each privacy tool. For AdBlockPlus,
both p(A,B) and p(B,C) are < 0.05, thereby showing
that it is soundly effective. In addition, p(C,D) ≥ 0.05,
thereby making it completely effective. However, p(C,D) for
AdBlockPlus is very close to achieving significance. Thus we
suspect that increasing the sample size may allow us to show
that AdBlockPlus is soundly effective, but not completely. Our
experiments evaluating Ghostery were inconclusive, since none
of the p-values were significant.

Thus, our experimental design enables us to evaluate the
sound and complete effectiveness of any privacy tool. We
perform an empirical completeness evaluation of the default
instantiation of AdFisher to gauge the sensitivity of our meth-
ods. We acknowledge that these evaluations are limited to
some standard distributions, and that they may not hold on
the outputs we measure. Nevertheless, these results pave the
way to evaluate more tools and at a larger scale, while still
providing soundness and qualified completeness.
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