Asynchronous Verifiable Secret Sharing in Optimal Communication Complexity

Michael Backes Amit Datta Aniket Kate MPI-SWS IIT, Kharagpur MPI-SWS

Outline

- Background: Verifiable Secret Sharing (VSS)
- Asynchronous Verifiable Secret Sharing (AVSS)
- State-of-the-art Protocols
- What we want to Achieve and How
- Our Protocols

An (n,t)-VSS: Sharing and Reconstruction

Asynchronous System Model

The Adversary:

- Controls the network and may delay messages between any two honest parties
- Cannot read or modify these messages
- Has to eventually deliver all the messages by honest parties
- Can corrupt at most *t* parties, out of *n*

In this setting, the optimal resiliency bound is $n \ge 3t + 1$

Sharing Phase:

AVSS in optimal complexity

Sharing Phase:

AVSS in optimal complexity

Reconstruction Phase:

For verification:

Commitment matrix $\mathbf{C} = \{C_{jl}\} = g^{f_{jl}}$

For verification:

Commitment matrix
$$\mathbf{C} = \{C_{jl}\} = g^{f_{jl}}$$

Reduced from $O(n^2)$ to O(n) with hash functions.

For verification:

Commitment matrix $\mathbf{C} = \{C_{jl}\} = g^{f_{jl}}$

Reduced from $O(n^2)$ to O(n) with hash functions.

Message complexity: $O(n^2)$, Communication complexity: $O(\kappa n^3)$, where κ is the security parameter

Reference : C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl. Asynchronous Verifiable Secret Sharing and Proactive Cryptosystems, ACM CCS'02.

What We Want to Achieve

Message complexity: $O(n^2)$,

Communication complexity: $O(\kappa n^2)$, where κ is the security parameter

What We Want to Achieve

Message complexity: $O(n^2)$,

Communication complexity: $O(\kappa n^2)$,

where κ is the security parameter

Solution : Polynomial Commitments Helps commit to a vector by publishing just one value

Reference : A.Kate, G. M. Zaverucha, and I. Goldberg. Constant-Size Commitments to Polynomials and Their Applications. In Proceedings of ASIACRYPT'10.

Setup $(1^{\kappa}, t)$ generates an appropriate algebraic structure $\mathcal{G} = \langle e, \mathbb{G}, \mathbb{G}_T \rangle$ and the system parameter PK

Setup $(1^{\kappa}, t)$ generates an appropriate algebraic structure $\mathcal{G} = \langle e, \mathbb{G}, \mathbb{G}_T \rangle$ and the system parameter PK

 $\operatorname{Commit}(PK,\phi(x))$ outputs a commitment $\mathcal C$ to a polynomial $\phi(x)$

Setup $(1^{\kappa}, t)$ generates an appropriate algebraic structure $\mathcal{G} = \langle e, \mathbb{G}, \mathbb{G}_T \rangle$ and the system parameter PK

 $\begin{array}{c} \operatorname{Commit}(PK,\phi(x)) \ \text{outputs a commitment } \mathcal{C} \ \text{to a polynomial} \\ \phi(x) \end{array}$

 $\begin{array}{l} {\sf CreateWitness}(PK,\phi(x),i) \ \ {\rm outputs} \ \langle i,\phi(i),w_i\rangle, \ {\rm where} \ w_i \ {\rm is} \ {\rm a} \\ {\rm witness} \ {\rm for} \ {\rm the} \ {\rm evaluation} \ \phi(i) \ {\rm of} \ \phi(x) \end{array}$

Setup $(1^{\kappa}, t)$ generates an appropriate algebraic structure $\mathcal{G} = \langle e, \mathbb{G}, \mathbb{G}_T \rangle$ and the system parameter PK

 $\begin{array}{c} \operatorname{Commit}(PK,\phi(x)) \ \text{outputs a commitment } \mathcal{C} \text{ to a polynomial} \\ \phi(x) \end{array}$

 $\begin{array}{l} {\sf CreateWitness}(PK,\phi(x),i) \ \ {\rm outputs} \ \langle i,\phi(i),w_i\rangle, \ {\rm where} \ w_i \ {\rm is} \ {\rm a} \\ {\rm witness} \ {\rm for} \ {\rm the} \ {\rm evaluation} \ \phi(i) \ {\rm of} \ \phi(x) \end{array}$

VerifyEval $(PK, C, i, \phi(i), w_i)$ verifies that $\phi(i)$ is indeed the evaluation of the polynomial committed in C

Our Protocol

AVSS in optimal complexity

Dealer

- *D* selects a polynomial $\phi(x)$, such that $\phi(0) = s$.
- $C = \text{Commit}(PK, \phi(x)), w_i = \text{CreateWitness}((PK, \phi(x), i))$
- D sends (C, w_i , $\phi(i)$) to every party P_i .

Dealer

- *D* selects a polynomial $\phi(x)$, such that $\phi(0) = s$.
- $C = \text{Commit}(PK, \phi(x)), w_i = \text{CreateWitness}((PK, \phi(x), i))$
- D sends (C, w_i , $\phi(i)$) to every party P_i .

Party P_i

- If VerifyEval($PK, C, i, \phi(i), w_i$) succeeds, send (echo, C)
- On receiving (n-t) (echo, \mathcal{C}), send (ready, holder, \mathcal{C})
- Otherwise:
 - (a) On receiving (n 2t) (ready, *, C) signals, send (ready, holder, C) to every party P_j .
 - (b) On receiving (n 2t) (ready,*, C') signals, send (ready, non-holder, C') to every party P_j .
- On receiving (n t) (ready, C) signals, and at least (n 2t) contain holder, terminate.

Salient Points

- There are at least $n 2t \ge 3t + 1 2t = t + 1$ honest parties with correct shares
- There are at most n send, n^2 echo and n^2 ready messages

Properties of AVSS

- Liveness. If the dealer *D* is honest, then all honest parties complete sharing.
 - Secrecy. If *D* is honest, then the adversary has no information about *s*.
- Agreement. If some honest party completes the sharing phase, then all honest parties will eventually complete the sharing phase.

Properties of AVSS

- Liveness. If the dealer *D* is honest, then all honest parties complete sharing.
- Secrecy. If *D* is honest, then the adversary has no information about *s*.
- Agreement. If some honest party completes the sharing phase, then all honest parties will eventually complete the sharing phase.
- Correctness. Once all honest parties complete sharing, there exists a fixed value $z \in \mathbb{Z}_p$, such that the following holds:
 - (a) If an honest dealer has shared the secret s, then s = z.
 - (b) If each of the honest servers P_i reconstructs some z_i , then $z_i = z$

Properties of AVSS

Liveness. If the dealer *D* is honest, then all honest parties complete sharing.

- Secrecy. If *D* is honest, then the adversary has no information about *s*.
- Agreement. If some honest party completes the sharing phase, then all honest parties will eventually complete the sharing phase.

Strong Correctness. Once t + 1 honest parties complete

sharing, there exists a fixed value $z \in \mathbb{Z}_p$, such that the following holds:

- (a) If an honest dealer has shared the secret s, then s = z.
- (b) If each of the honest servers P_i reconstructs some z_i , then $z_i = z$

• Dealer sends polynomials $\phi^0(x), \phi^1(x), ... \phi^n(x)$, with $\phi^k(x) = F(x, k), F(x, y)$ is of degree $\leq t$. Commitments: $\mathcal{C}^0, \mathcal{C}^1, ..., \mathcal{C}^n$.

- Dealer sends polynomials $\phi^0(x), \phi^1(x), ... \phi^n(x)$, with $\phi^k(x) = F(x, k), F(x, y)$ is of degree $\leq t$. Commitments: $\mathcal{C}^0, \mathcal{C}^1, ..., \mathcal{C}^n$.
- There will be at least t + 1 honest parties with correct polynomials $\phi^k(x) = F(x, k)$, and they compute their shares $s_k = \phi^k(0) = F(0, k) = F(k, 0) = \phi^0(k)$

- Dealer sends polynomials $\phi^0(x), \phi^1(x), ... \phi^n(x)$, with $\phi^k(x) = F(x, k), F(x, y)$ is of degree $\leq t$. Commitments: $\mathcal{C}^0, \mathcal{C}^1, ..., \mathcal{C}^n$.
- There will be at least t + 1 honest parties with correct polynomials $\phi^k(x) = F(x, k)$, and they compute their shares $s_k = \phi^k(0) = F(0, k) = F(k, 0) = \phi^0(k)$
- These t + 1 parties can enable any P_i to reconstruct its polynomial $\phi^i(x)$ by sending $\phi^k(i) = \phi^i(k)$

- Dealer sends polynomials $\phi^0(x), \phi^1(x), ... \phi^n(x)$, with $\phi^k(x) = F(x, k), F(x, y)$ is of degree $\leq t$. Commitments: $\mathcal{C}^0, \mathcal{C}^1, ..., \mathcal{C}^n$.
- There will be at least t + 1 honest parties with correct polynomials $\phi^k(x) = F(x, k)$, and they compute their shares $s_k = \phi^k(0) = F(0, k) = F(k, 0) = \phi^0(k)$
- These t + 1 parties can enable any P_i to reconstruct its polynomial $\phi^i(x)$ by sending $\phi^k(i) = \phi^i(k)$
- Problem: Have to send a vector of commitments in the echo and ready messages.

- Dealer sends polynomials $\phi^0(x), \phi^1(x), ... \phi^n(x)$, with $\phi^k(x) = F(x, k), F(x, y)$ is of degree $\leq t$. Commitments: $\mathcal{C}^0, \mathcal{C}^1, ..., \mathcal{C}^n$.
- There will be at least t + 1 honest parties with correct polynomials $\phi^k(x) = F(x, k)$, and they compute their shares $s_k = \phi^k(0) = F(0, k) = F(k, 0) = \phi^0(k)$
- These t + 1 parties can enable any P_i to reconstruct its polynomial $\phi^i(x)$ by sending $\phi^k(i) = \phi^i(k)$
- Problem: Have to send a vector of commitments in the echo and ready messages.
- Solution: Perform another round of PolyCommit on hash values of the commitments.

Theorem

A protocol for AVSS is sufficient to generate a protocol for a reliable broadcast.

Theorem

A protocol for AVSS is sufficient to generate a protocol for a reliable broadcast.

Theorem

A protocol for AVSS is sufficient to generate a protocol for a reliable broadcast.

Theorem

If a reliable broadcast protocol terminates, the number of messages exchanged is lower bounded by $max\{(n-t), (1+t/2)^2\}.$

Reference : D. Dolev and R. Reischuk. Bounds on information exchange for byzantine agreement. J. ACM, 1985

Contributions

- Incorporation of Polynomial Commitments to solve AVSS with improved complexity
- This protocol for AVSS achieves optimal complexity

Contributions

- Incorporation of Polynomial Commitments to solve AVSS with improved complexity
- This protocol for AVSS achieves optimal complexity

Thank You