
Accelerating Fully Homomorphic Encryption
on Graphic Processing Units

Varun Srivastava Amit Datta
08CS1001 08CS1045

Guide: Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
IIT Kharagpur



How it all started?

Amit working on improving time complexity of FHE 1

1Fully Homomorphic Encryption
Accelerating FHE on GPUs 2



How it all started?

Varun working on GPU1 based acceleration

1Graphics Processing Unit
Accelerating FHE on GPUs 2



How it all started?

How about improving the timings of FHE by accelerating it on
GPU?

We shall show how this will be done...

Accelerating FHE on GPUs 3



How it all started?

How about improving the timings of FHE by accelerating it on
GPU?

We shall show how this will be done...

Accelerating FHE on GPUs 3



Outline

What is Fully Homomorphic Encryption?

How do things get accelerated on a GPU?

Combining the two ideas!

Accelerating FHE on GPUs 4



Part I

FULLY HOMOMORPHIC ENCRYPTION

Accelerating FHE on GPUs 5



Basic idea of FHE

Stating the goal of FHE, author Craig Gentry said:

I want to delegate processing of my data, without
giving away access to it

Accelerating FHE on GPUs 6



Why is so much importance being attached to FHE?

Cloud Computing :
Data is stored on your private Cloud in encrypted
form.
In order to perform queries on your data, send an
encrypted version queries to Cloud.
Cloud performs queries on encrypted data, gets
results and returns them.
You decrypt return values to obtain results.

Accelerating FHE on GPUs 7



Why is so much importance being attached to FHE?

Private Google Search :
You do not want Google to know what you are
querying.
Send encrypted queries to Google.
Receive encrypted results.
Decrypt them to obtain your required results.

Accelerating FHE on GPUs 7



FHE schemes

Two existing schemes

Ideal Lattice Based Scheme Developed by Gentry [1]. Scheme
based on ideal lattices

Integer Based Scheme Developed by Dijk et al. [3]. Much
simpler scheme based on integers

Accelerating FHE on GPUs 8



The FHE scheme

An encryption scheme E comprises of the following algorithms:
KeyGenE

EncryptE

DecryptE

In addition to them, the FHE has the following algorithms:
EvaluateE

RecryptE

Accelerating FHE on GPUs 9



The FHE scheme

An encryption scheme E comprises of the following algorithms:
KeyGenE

EncryptE

DecryptE

In addition to them, the FHE has the following algorithms:
EvaluateE

RecryptE

Accelerating FHE on GPUs 9



KeyGenE

Input: Parameters: #bits-t; degree of poly-N
Output: Public key pk and secret key sk

1: Initialize F ← xN + 1, where N is a power of 2
2: repeat
3: Generate a random polynomial G of degree N − 1 and

t-bits
4: Compute p← Resultant(G,F )
5: until p is a prime
6: Fp ← F mod p
7: Gp ← G mod p
8: Dp ← poly_gcd(Fp, Gp)
9: Z ← Inverse of Gp mod Fp

Accelerating FHE on GPUs 10



KeyGenE continued

1: // Build public key
2: pk.p← p
3: pk.α← −Dp.coeff[0]
4: // Build secret key
5: sk.p← p
6: sk.B ← Z.coeff[0] mod 2p
7: // Build hint
8: Bi ← B/S2 // S1 - entire set size, S2 - subset size in SSSP
9: pk.B[0 · · · (S2− 1)]← Bi

10: pk.c[0 · · · (S2− 1)]← EncryptE∗(1, pk)
11: pk.B[S2 · · · (S1− 1)]← random[−p,+p]
12: pk.c[S2 · · · (S1− 1)]← EncryptE∗(0, pk)
13: Add and subtract values to pk.B[0 · · · (S2− 1)], so that the

sum remains the same
14: Shuffle all pk.B[i] values

Accelerating FHE on GPUs 11



EncryptE

Input: Bit m; Public key pk
Output: Integer cipher-text c

1: Randomly choose a polynomial C of degree N − 1 with
even coefficients

2: c← C(pk.α) +m mod pk.p

Accelerating FHE on GPUs 12



DecryptE

Input: Cipher c; Secret key sk
Output: Bit m

1: q ← b c∗sk.Bsk.p e
2: m← c+ q mod 2

Accelerating FHE on GPUs 13



EvaluateE

Input: Vector of cipher-texts ĉ; Circuit C; Public key pk
Output: Computed cipher-text ĉ

1: Modify C to C† with boolean AND(.) replaced with integer
multiplication ×, and boolean EXOR(∧) replaced with
integer addition +.

2: Convert infix C† to post-fix C††
3: Evaluate C†† plugging in values from ĉ using an

implementation with stacks

Accelerating FHE on GPUs 14



RecryptE

Input: Another public key pk′; Decryption circuit D; Cipher c; A
vector ŝk, where each ŝk[i]← EncryptE(pk

′, sk[i])
Output: Refreshed cipher-text c′ encrypted under pk′

1: Encrypt each bit of c to form a vector ĉ, i.e.
ĉ[i]← EncryptE(pk

′, c[i])
2: c′ ← EvaluateE(pk′, D, ŝk, ĉ)

Accelerating FHE on GPUs 15



Timing Observations of our Implementation

λ KeyGenE EncryptE DecryptE
9 0.195 ms 0.552 ms 0.040 ms

11 0.199 ms 0.990 ms 0.085 ms
13 0.193 ms 2.375 ms 0.127 ms
15 0.197 ms 4.786 ms 0.273 ms

Table: Table showing the variation of the Key Gen, Encryption and
Decryption times with the security parameter λ on our implementation

Accelerating FHE on GPUs 16



Timing Observations of Gentry’s Implementation

λ KeyGenE EncryptE DecryptE
9 0.16 sec 4 ms 4 ms

11 1.25 sec 60 ms 23 ms
13 10 sec 0.7 sec 0.12 sec
15 95 sec 5.3 ms 0.6 ms

Table: The same comparisons on Gentry’s implementation with
lattices

Accelerating FHE on GPUs 17



Is this it?

Have we already achieved our goal?

NO!
The RecryptE function has not been implemented.

It was too mathematically involved.
We proceeded to implement the lattice-based scheme,
which we assumed at time would provide significant insight
to implementing the RecryptE function

Accelerating FHE on GPUs 18



Is this it?

Have we already achieved our goal?

NO!
The RecryptE function has not been implemented.

It was too mathematically involved.
We proceeded to implement the lattice-based scheme,
which we assumed at time would provide significant insight
to implementing the RecryptE function

Accelerating FHE on GPUs 18



Is this it?

Have we already achieved our goal?

NO!
The RecryptE function has not been implemented.

It was too mathematically involved.
We proceeded to implement the lattice-based scheme,
which we assumed at time would provide significant insight
to implementing the RecryptE function

Accelerating FHE on GPUs 18



Our implementation of the Lattice based scheme

Development of a polynomial library, which we decided to
build ourselves catering to our specific needs.

Started out with handling polynomials with integer
coefficients.

Which soon became floating point and then complex
coefficients.

Experienced difficulties in computing the inverse of a
polynomial modulo another polynomial.

Accelerating FHE on GPUs 19



Our implementation of the Lattice based scheme

We did succeed (partially) but our KeyGenE never seemed
to terminate.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Major Disappointment.

Accelerating FHE on GPUs 20



Our implementation of the Lattice based scheme

We did succeed (partially) but our KeyGenE never seemed
to terminate.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Major Disappointment.

Accelerating FHE on GPUs 20



The Scarab Library

The Scarab Library 2, developed by Perl, Brenner and
Smith [2], is a library to demonstrate a working implementation
of FHE with integers.

Requirements:
GMP - GNU Multiple Precision Library
FLINT - Fast Library for Number Theory

MPIR - Multiple Precision Integers and Rationals
MPFR - C library for Multiple-Precision Floating-point
computations with correct Rounding

2http://www.hcrypt.com/scarab-library/
Accelerating FHE on GPUs 21



The Scarab Library

It gave us the much needed implementation of the
RecryptE function

We developed an extension to this library which enabled it
to handle any arbitrary function expressed in AND and
EXOR

Accelerating FHE on GPUs 22



The Scarab Library

It gave us the much needed implementation of the
RecryptE function

We developed an extension to this library which enabled it
to handle any arbitrary function expressed in AND and
EXOR

Accelerating FHE on GPUs 22



Timing Observations

bits KeyGenE∗ EncryptE∗ DecryptE∗ RecryptE
384 17.379 sec 4.742 ms 0.171 ms 200.414 ms
512 69.761 sec 4.868 ms 0.247 ms 210.767 ms

1024 11.65 mins 14.945 ms 0.688 ms 278.591 ms

Table: Running times of the implementation using Scarab Library

Accelerating FHE on GPUs 23



Timing Observations

This Scheme Gentry’s Scheme
bits KeyGenE∗ bits KeyGenE∗
384 17.4 sec 384 -
512 69.8 sec 512 2.4 sec

1024 11.6 mins 1024 -
2048 1.5 hours 2048 40 sec
8192 - 8192 8 mins
32768 - 32768 2 hours

Table: An explicit comparison between the times required by Gentry’s
KeyGenE∗ and this implementation

Accelerating FHE on GPUs 24



Timing Observations

#bits = 384 #bits = 512 #bits = 1024

#runs KeyGenE∗ #runs KeyGenE∗ #runs KeyGenE∗
61 2.35 s 23 3.90 s 177 60.04 s

473 10.65 s 437 19.36 s 1037 297.83 s
1469 30.86 s 665 26.07 s 1163 318.90 s
2343 47.37 s 1045 42.99 s 1425 382.64 s
3101 60.96 s 2317 96.68 s 2569 699.57 s
10387 202.22 s 2981 122.11 s 5735 1498.60 s

avg=19.95 ms avg=41.84 ms avg=269.09 ms

Table: Times required for performing KeyGenE∗ and the
corresponding number of times primality testing is carried out

Accelerating FHE on GPUs 25



Craig Gentry.
Fully homomorphic encryption using ideal lattices.
In Michael Mitzenmacher, editor, STOC, pages 169–178. ACM,
2009.

Henning Perl, Michael Brenner, and Matthew Smith.
Poster: an implementation of the fully homomorphic
smart-vercauteren crypto-system.
In Proceedings of the 18th ACM conference on Computer and
communications security, CCS ’11, pages 837–840, New York,
NY, USA, 2011. ACM.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod
Vaikuntanathan.
Fully homomorphic encryption over the integers.
Cryptology ePrint Archive, Report 2009/616, 2009.
http://eprint.iacr.org/.

Accelerating FHE on GPUs 25

http://eprint.iacr.org/

