Fully Homomorphic

Amit Datta
08CS1045

Mentored by | N
| Prof. Debdeep Mukhopadhyay |

-

\

Outline

o Motivation

o A naive scheme and its problems

o Existing Scheme and its implementation
o Problems

o Future Work

The Goal of F

o | want to delegate processing of my data,
without giving away access to if.

-Craig Gentry(2009)

.
%

Application 1 — Cloud
Computing

o Data stored on cloud in encrypted form

o You want to perform SECRET operations
on the data

o Encrypt simple queries to _queries_
o Send _queries_ to cloud

o Cloud performs _gueries_ on encrypted
data and sends back encrypted results

o Decrypt them to get actual results

Application 2 — Private Google
Search

o You don’ t want Google to know your
SECRET queries

Google

India

|How can one destroy the Google headquarters?

Google Search I'm Feeling Lucky

Google.co.in offered in: Hindi Bengali Telugu Marathi Tamil Gujarati Kannada Malayalam Punjabi

Application 2 — Private Google
Search

o You don’ t want Google to know your
SECRET queries

o Submit encrypted queries

o Get encrypted results
o Decrypt results

Our Goal(s)

o Perform operations of data without
knowing the contents EFFICIENTLY

o Performing attacks on the existing
scheme,
especially SIDE-CHANNEL ATTACKS.

A simple scheme

o Shared secret key: odd number p
o To encrypt a bit min {0,1}:

o Choose at random smallr, large g
o Output ¢ = ¥ + pg

m = LSB of distance to nearest multiple of p

o To decrypft cC:
o Output m = (c mod p) mod 2

A simple scheme

o Shared secret key: odd number p(=101)
o To encrypt a bit min {0,1}:

o Choose at random smallr, large g

o Output ¢ = ¥ + pg

m = LSB of distance to nearest multiple of p

o To decrypft cC:
o Output m = (c mod p) mod 2

A simple scheme

o Shared secret key: odd number p(=101)
o To encrypt a bitmin {0,1}: (say m=1)

o Choose at random smallr, large g

o Output ¢ = %% + pg

m = LSB of distance to nearest multiple of p

o To decrypft cC:
o Output m = (c mod p) mod 2

A simple scheme

o Shared secret key: odd number p(=101)

o To encrypt a bitmin {0,1}: (say m=1)

o Choose at random small r(=5), large g(=9)
o Output ¢ = ¥ + pg

m = LSB of distance to nearest multiple of p

o To decrypft cC:
o Output m = (c mod p) mod 2

A simple scheme

o Shared secret key: odd number p(=101)

o To encrypt a bitmin {0,1}: (say m=1)

o Choose at random small r(=5), large g(=9)
o Output ¢ = T + pg= 1 + 10 + 909= 920

m = LSB of distance to nearest multiple of p

o To decrypft cC:
o Output m = (c mod p) mod 2

A simple scheme

o Shared secret key: odd number p(=101)
o To encrypt a bitmin {0,1}: (say m=1) l
o Choose at random small r(=5), large g(=9)
o Output ¢ = T + pg= 1 + 10 + 909= 920

m = LSB of distance to nearest multiple of p

o To decrypft cC:

o Output m = (c mod p) mod 2
= (920 mod 101) mod 2=11 mod 2 =1

omomorphisme

O C;=m,+2r,+pqQ, C,=M,+2r,+pa,
Noise
O Cy+Cy = (M +my) +2(r 41,) +p (g, +0,)
o (c,+c,mod p)mod 2 = m,;+m, mod 2= m1 XOR

Noise ,
0 C.Cop= (M +2r).(m,+2r,)+p(q’)

o (c,.c,mod p)mod 2 =m,.m, mod 2=m1 AND m

omomorphisme

0 C,;=m;+2r,+pq; C,=M,+2r,+pa,
o C,=1+2.5+9.101 C,= 1+2.7+8.101
o =11+909 = 15+808

0 C..Co=11.15+295.101=165 + 295.101

0 C,.C, mod 101 = 165 mod 101 = 64
o (¢,.c, mod 101) mod 2 = 0 (Incorrectl)

A simple scheme

o Shared secret key: odd number p(=101)
o To encrypt a bitmin {0,1}: (say m=1) l
o Choose at random small r(=5), large g(=9)
o Output ¢ = T + pg= 1 + 10 + 909= 920

m = LSB of distance to nearest multiple of p

o To decrypft cC:

o Output m = (c mod p) mod 2
= (920 mod 101) mod 2=11 mod 2 =1

Noise Problem

o Problem arises when noise becomes
comparable to p

o When this happens, cipher-texts could be
decrypted, and again encrypted with
fresh noise, which is always small

Noise Problem

o Problem arises when noise becomes
comparable to p

o When this happens, cipher-texts could be
decrypted, and again encrypted with
fresh noise, which is always small

o Wouldn’ t that compromise privacy?

Need: A Bootstrappable
Scheme

o A scheme which can handle its own
decryption function

o If such a scheme can be designed, cipher
texts encrypted under one key, can be
encrypted for another level with another
key, and then one level of encryption
removed

Need: A Bootstrappable
Scheme

o A scheme which can handle its own l
decryption function

o If such a scheme can be designed, cipher
texts encrypted under one key, can be
encrypted for another level with another
key, and then one level of encryption
removed

o We will come back to this!

Gentry’ s F

E scheme

o KeyGen(A1)
o Encrypt(pk, m)
o Decrypft(sk, m)
o Evaluate(pk, f, c,, ..., ¢y
o Recrypt(pk,, D, sk;, ¢;)

Parameter Declaration

o Read security parameter A
0SetN—A,P—=12 QA"

o Randomly select two integer parameters
O<a<f

Gentry’ s F

E scheme

o KeyGen(A1)

o Encrypft(pk, m)

o Decrypt(sk, m)
o Evaluate(pk, f, c,, ..., C))
o Recrypt(pk,, D, sk, ;)

KeyGen(A)

o Generates pk, sk

o pis arandom P-bit odd integer
o Generate a set y={y;, ... Y}y €[0, 2

o For a sparse subset S of size «,
2 Y= (1/p) mod 2

o sk < s, where s ={0,1}# is an encoding of S
opk < (p.y)

Implementation Technique

o Structure publicKey defined with one
integer (p) and an array (y) of reals for pk.

o Each element is subset solution is set at (1/
p+2(rand() mod «))/ «

o Every other element of y is set randomly

Gentry’ s F

E scheme

o KeyGen(A1)
o Encrypft(pk, m)

o Decrypt(sk, m)
o Evaluate(pk, f, c,, ..., C))
o Recrypt(pk,, D, sk, ;)

Encrypt(pk, m)

o Generate an N-bit infeger m’ such that
m’=m mod 2

o Generate a random Q-bit integer g
oSetc=m" + (pk.p)*g

o Generate a set z:z<—c*y,mod 2

o Return ¢ < (c, z)

Implementation Technique

o Required a mod?2 function, which can
compute values of reals modulo 2.

o Necessary for post-processing y to
compute z.

Gentry’ s F

E scheme

o KeyGen(A1)
o Encrypft(pk, m)
o Decrypt(sk, m)

o Evaluate(pk, f, c,, ..., C))
o Recrypt(pk,, D, sk, ;)

Decrypt(sk, c)

o To return (¢ mod p) mod 2
o Equivalent to LSB(c) XOR LSB(L(c/p) |)
o L. | returns nearest integer
o 2 (ski*zy) = c{Z2 (ski*y;)} = c(1/p) mod 2

Implementation Technique

o Function nearest _int
o Function LSB

Gentry’ s F

E scheme

o KeyGen(A1)
o Encrypft(pk, m)
o Decrypt(sk, m)
o Evaluate(pk, f, c,, ..., ¢y

o Recrypt(pk,, D, sk, ;)

Evaluate(pk, f, ¢, ..., C)

o Takes in boolean function with only ANDs
and XORs

o Replaces AND with multiplication
o Replaces XOR with addition
o Returns ¢ < f(c,, ..., ¢y

Implementation Technique

o Each ¢, is of type publicKey.

o Technically, computes c.p < f(c,.p, ...,
Ct.P)

o Cc.y iscomputed as c.y, < pk.y, * c.p

o An expression evaluator was developed
using stacks

Expression Evaluator -

: Replace
Expression variables with
E and values E[values]
array of
\Ze | [VI=3S
Input
P Convert
from infix to
postfix
Output format
Result Evaluate

expression using
a stack

Gentry’ s F

E scheme

o KeyGen(A1)
o Encrypft(pk, m)
o Decrypt(sk, m)
o Evaluate(pk, f, c,, ..., C))
o Recrypt(pk,, D, sk;, ¢;)

Recrypt(pk,,

D, sk, C,)

o D is the boolean expression for the
decryption function

o sk, is a vector of cipher-texis , where
sk, [)] < Encrypt(pk,, sk;[i])

o C, is a cipher-text encrypted under pk,

o Compute ¢, : ¢,[i] < Encrypt(pk,, <c,>)

o Return ¢ < Evaluate(pk,, D, sk,, ¢,)

Implementation Issues

o Formulation of D using naive integer
methods

o Published implementations fill date
[Gentry’ 11], [Smart’ 09] have used lattice
based methods

Timing Measurements

0.405 ms 0.145 ms 0.125 ms

2 0.421 ms 0.337 ms 3.43 ms

2/ 0.422 ms 4.2 ms 16.36 ms
27 0.438 ms 33.37 ms 24.54 ms
211 0.437 ms 187.02 ms 89.16 ms
2 0.434 ms 474.29 ms 215.94 ms

215 0.433 ms 0.99 sec 0.5 sec

Short Term Goals

o Generalization of input by writing a
convertor for boolean functions to AND-
XOR form

o Use lattice-based methods to implement
Recrypt

o Extensive testing

Long Term Goals

o Improve time and memory complexity of
scheme. Current implementations are not
practical

o Explore the possibilities of side-channel
attacks on this scheme

