Fully Homomorphic Encryption

Amit Datta 08CS1045

Mentored by Prof. Debdeep Mukhopadhyay

Outline

- Motivation
- A naïve scheme and its problems
- Existing Scheme and its implementation
- Problems
- Future Work

The Goal of FHE

• I want to delegate processing of my data, without giving away access to it.

-Craig Gentry (2009)

Application 1 – Cloud Computing

- Data stored on cloud in encrypted form
- You want to perform SECRET operations on the data
- Encrypt simple queries to _queries_
- Send _queries_ to cloud
- Cloud performs _queries_ on encrypted data and sends back encrypted results
- Decrypt them to get actual results

Application 2 – Private Google Search

 You don't want Google to know your SECRET queries

How can one destroy the Google headquarters?

Google Search

I'm Feeling Lucky

Google.co.in offered in: Hindi Bengali Telugu Marathi Tamil Gujarati Kannada Malayalam Punjabi

Application 2 – Private Google Search

- You don't want Google to know your SECRET queries
- Submit encrypted queries
- Get encrypted results
- Decrypt results

Our Goal(s)

- Perform operations of data without knowing the contents EFFICIENTLY
- Performing attacks on the existing scheme, especially SIDE-CHANNEL ATTACKS.

- Shared secret key: odd number p
- To encrypt a bit m in {0,1}:
- Choose at random small r, large q
- Output c = m^{noise}2r + pq
 m = LSB of distance to nearest multiple of p
- To decrypt c:
- \circ Output m = (c mod p) mod 2

- Shared secret key: odd number p(=101)
- To encrypt a bit m in {0,1}:
- Choose at random small r, large q
- Output $c = m^{noise} 2r + pq$ m = LSB of distance to nearest multiple of p
- To decrypt c:
- \circ Output m = (c mod p) mod 2

- Shared secret key: odd number p(=101)
- To encrypt a bit m in $\{0,1\}$: (say m=1)
- Choose at random small r, large q
- Output c = m^{noise}2r + pq
 m = LSB of distance to nearest multiple of p
- To decrypt c:
- \circ Output m = (c mod p) mod 2

- Shared secret key: odd number p(=101)
- To encrypt a bit m in $\{0,1\}$: (say m=1)
- Choose at random small r(=5), large q(=9)
- Output c = m^{noise}2r + pq
 m = LSB of distance to nearest multiple of p
- To decrypt c:
- \circ Output m = (c mod p) mod 2

- Shared secret key: odd number p(=101)
- To encrypt a bit m in $\{0,1\}$: (say m=1)
- Choose at random small r(=5), large q(=9)
- Output $c = m^{\text{noise}} 2r + pq = 1 + 10 + 909 = 920$ m = LSB of distance to nearest multiple of p
- To decrypt c:
- \circ Output m = (c mod p) mod 2

- Shared secret key: odd number p(=101)
- To encrypt a bit m in $\{0,1\}$: (say m=1)
- Choose at random small r(=5), large q(=9)
- Output $c = m^{\text{noise}} 2r + pq = 1 + 10 + 909 = 920$ m = LSB of distance to nearest multiple of p
- To decrypt c:
- Output $m = (c \mod p) \mod 2$ = (920 mod 101) mod 2 = 11 mod 2 = 1

Homomorphism?

$$\circ c_1 = m_1 + 2r_1 + pq_1$$

$$c_2 = m_2 + 2r_2 + pq_2$$

Noise

$$c_1 + c_2 = (m_1 + m_2) + 2(r_1 + r_2) + p(q_1 + q_2)$$

 \circ (c₁+c₂ mod p)mod 2 = m₁+m₂ mod 2 = m1 XOR m²

Noise

$$\circ$$
 $c_1.c_2 = (m_1+2r_1).(m_2+2r_2)+p(q')$

 \circ (c₁.c₂ mod p)mod 2 = m₁.m₂ mod 2 = m1 AND m2

Homomorphism?

$$\circ c_1 = m_1 + 2r_1 + pq_1$$

$$\circ$$
 C₁=1+2.5+9.101

$$\circ$$
 = 11+909

$$c_2 = m_2 + 2r_2 + pq_2$$

$$C_2 = 1 + 2.7 + 8.101$$

$$= 15 + 808$$

$$\circ$$
 C₁.C₂=11.15 + 295.101=165 + 295.101

- \circ c₁.c₂ mod 101 = 165 mod 101 = 64
- \circ (c₁.c₂ mod 101) mod 2 = 0 (Incorrect!)

- Shared secret key: odd number p(=101)
- To encrypt a bit m in $\{0,1\}$: (say m=1)
- Choose at random small r(=5), large q(=9)
- Output $c = m^{\text{noise}} 2r + pq = 1 + 10 + 909 = 920$ m = LSB of distance to nearest multiple of p
- To decrypt c:
- Output $m = (c \mod p) \mod 2$ = (920 mod 101) mod 2 = 11 mod 2 = 1

Noise Problem

- Problem arises when noise becomes comparable to p
- When this happens, cipher-texts could be decrypted, and again encrypted with fresh noise, which is always small

Noise Problem

- Problem arises when noise becomes comparable to p
- When this happens, cipher-texts could be decrypted, and again encrypted with fresh noise, which is always small
- Wouldn't that compromise privacy?

Need: A Bootstrappable Scheme

- A scheme which can handle its own decryption function
- If such a scheme can be designed, cipher texts encrypted under one key, can be encrypted for another level with another key, and then one level of encryption removed

Need: A Bootstrappable Scheme

- A scheme which can handle its own decryption function
- If such a scheme can be designed, cipher texts encrypted under one key, can be encrypted for another level with another key, and then one level of encryption removed
- We will come back to this!

Gentry's FHE scheme

- KeyGen(λ)
- Encrypt(pk, m)
- Decrypt(sk, m)
- Evaluate(pk, f, c_1 , ..., c_t)
- Recrypt(pk₂, D_{ε}, sk₁, c₁)

Parameter Declaration

- \circ Read security parameter λ
- o Set N← λ , P ← λ^2 , Q ← λ^5
- Randomly select two integer parameters $0 < \alpha < \beta$

Gentry's FHE scheme

KeyGen(λ)

- Encrypt(pk, m)
- Decrypt(sk, m)
- \circ Evaluate(pk, f, c_1, \ldots, c_t)
- Recrypt(pk_2 , D_{ε} , sk_1 , c_1)

KeyGen(λ)

- Generates pk, sk
- op is a random P-bit odd integer
- Generate a set $\mathbf{y} = \{y_1, \dots, y_{\beta}\}: y_i \in [0, 2]$
- For a sparse subset S of size α , $\Sigma y_S = (1/p) \mod 2$
- o sk ← s, where s ={0,1} $^{\beta}$ is an encoding of S
- \circ pk \leftarrow (p, y)

Implementation Technique

- Structure publicKey defined with one integer (p) and an array (y) of reals for pk.
- Each element is subset solution is set at (1/p+2(rand() mod α))/ α
- Every other element of y is set randomly

Gentry's FHE scheme

- KeyGen(λ)
- Encrypt(pk, m)
- Decrypt(sk, m)
- \circ Evaluate(pk, f, c_1, \ldots, c_t)
- Recrypt(pk_2 , D_{ε} , sk_1 , c_1)

Encrypt(pk, m)

- Generate an N-bit integer m' such that m'=m mod 2
- Generate a random Q-bit integer q
- \circ Set c = m' + (pk.p)*q
- Generate a set z:z_i←c*y_i mod 2
- Return $\mathbf{c} \leftarrow (\mathbf{c}, \mathbf{z})$

Implementation Technique

- Required a *mod2* function, which can compute values of reals modulo 2.
- Necessary for post-processing y to compute z.

Gentry's FHE scheme

- KeyGen(λ)
- Encrypt(pk, m)
- Decrypt(sk, m)
- \circ Evaluate(pk, f, c_1, \ldots, c_t)
- Recrypt(pk_2 , D_{ε} , sk_1 , c_1)

Decrypt(sk, c)

- To return (c mod p) mod 2
- Equivalent to LSB(c) XOR LSB(L(c/p) →
- o L. 7 returns nearest integer
- $\Sigma (sk_t^*z_t) = c\{\Sigma (sk_t^*y_t)\} = c(1/p) \mod 2$

Implementation Technique

- Function nearest_int
- Function LSB

Gentry's FHE scheme

- KeyGen(λ)
- Encrypt(pk, m)
- Decrypt(sk, m)
- Evaluate(pk, f, c_1, \ldots, c_t)
- Recrypt(pk_2 , D_{ε} , sk_1 , c_1)

Evaluate(pk, f, c_1 , ..., c_t)

- Takes in boolean function with only ANDs and XORs
- Replaces AND with multiplication
- Replaces XOR with addition
- Returns $c \leftarrow f(c_1, ..., c_t)$

Implementation Technique

- Each c_i is of type **publicKey**.
- o Technically, computes c.p ← $f(c_1.p, ..., c_t.p)$
- \circ c.y is computed as c.y_i ← pk.y_i * c.p
- An expression evaluator was developed using stacks

Expression Evaluator

Expression
E and
array of
values
Input

Replace variables with values

E[values]

Convert

postfix format

from infix to

Output

Result

Evaluate expression using a stack

Ep

Gentry's FHE scheme

- KeyGen(λ)
- Encrypt(pk, m)
- Decrypt(sk, m)
- Evaluate(pk, f, c₁, ..., c_t)
- Recrypt(pk₂, D_{ε}, sk₁, c₁)

Recrypt(pk_2 , D, sk_1 , c_1)

- D is the boolean expression for the decryption function
- sk₁ is a vector of cipher-texts, where sk₁[i] ← Encrypt(pk₂, sk₁[i])
- o c₁ is a cipher-text encrypted under pk₁
- o Compute $c_1 : c_1[i]$ ← Encrypt(pk₂, <c₁>_i)
- Return c \leftarrow Evaluate(pk₂, D, **sk₁**, **c₁**)

Implementation Issues

- Formulation of D using naïve integer methods
- Published implementations till date [Gentry' 11], [Smart' 09] have used lattice based methods

Timing Measurements

Dimension	KeyGen	Encrypt	Decrypt
23	0.405 ms	0.145 ms	0.125 ms
2 ⁵	0.421 ms	0.337 ms	3.43 ms
27	0.422 ms	4.2 ms	16.36 ms
29	0.438 ms	33.37 ms	24.54 ms
211	0.437 ms	187.02 ms	89.16 ms
213	0.434 ms	474.29 ms	215.94 ms
2 ¹⁵	0.433 ms	0.99 sec	0.5 sec

Short Term Goals

- Generalization of input by writing a convertor for boolean functions to AND-XOR form
- Use lattice-based methods to implement Recrypt
- Extensive testing

Long Term Goals

- Improve time and memory complexity of scheme. Current implementations are not practical
- Explore the possibilities of side-channel attacks on this scheme