
Fully Homomorphic Encryption

Mentored by

Prof. Debdeep Mukhopadhyay

Amit Datta
08CS1045

Outline
� Motivation
� A naïve scheme and its problems
� Existing Scheme and its implementation
� Problems
� Future Work

The Goal of FHE

�  I want to delegate processing of my data,
without giving away access to it.

-Craig Gentry(2009)

Application 1 – Cloud
Computing
� Data stored on cloud in encrypted form
� You want to perform SECRET operations

on the data
� Encrypt simple queries to _queries_
� Send _queries_ to cloud
� Cloud performs _queries_ on encrypted

data and sends back encrypted results
� Decrypt them to get actual results

Application 2 – Private Google
Search
� You don’t want Google to know your

SECRET queries
� Submit encrypted queries
� Get encrypted results
� Decrypt results

Application 2 – Private Google
Search
� You don’t want Google to know your

SECRET queries
� Submit encrypted queries
� Get encrypted results
� Decrypt results

Our Goal(s)
� Perform operations of data without

knowing the contents EFFICIENTLY

� Performing attacks on the existing
scheme,
especially SIDE-CHANNEL ATTACKS.

A simple scheme
� Shared secret key: odd number p
� To encrypt a bit m in {0,1}:
� Choose at random small r, large q
� Output c = m + 2r + pq

� To decrypt c:
� Output m = (c mod p) mod 2

m = LSB of distance to nearest multiple of p

noise

A simple scheme
� Shared secret key: odd number p(=101)
� To encrypt a bit m in {0,1}:
� Choose at random small r, large q
� Output c = m + 2r + pq

� To decrypt c:
� Output m = (c mod p) mod 2

m = LSB of distance to nearest multiple of p

noise

A simple scheme
� Shared secret key: odd number p(=101)
� To encrypt a bit m in {0,1}: (say m=1)
� Choose at random small r, large q
� Output c = m + 2r + pq

� To decrypt c:
� Output m = (c mod p) mod 2

m = LSB of distance to nearest multiple of p

noise

A simple scheme
� Shared secret key: odd number p(=101)
� To encrypt a bit m in {0,1}: (say m=1)
� Choose at random small r(=5), large q(=9)
� Output c = m + 2r + pq

� To decrypt c:
� Output m = (c mod p) mod 2

m = LSB of distance to nearest multiple of p

noise

A simple scheme
� Shared secret key: odd number p(=101)
� To encrypt a bit m in {0,1}: (say m=1)
� Choose at random small r(=5), large q(=9)
� Output c = m + 2r + pq= 1 + 10 + 909= 920

� To decrypt c:
� Output m = (c mod p) mod 2

m = LSB of distance to nearest multiple of p

noise

A simple scheme
� Shared secret key: odd number p(=101)
� To encrypt a bit m in {0,1}: (say m=1)
� Choose at random small r(=5), large q(=9)
� Output c = m + 2r + pq= 1 + 10 + 909= 920

� To decrypt c:
� Output m = (c mod p) mod 2

 = (920 mod 101) mod 2 = 11 mod 2 = 1

m = LSB of distance to nearest multiple of p

noise

Homomorphism?
� c1=m1+2r1+pq1 c2=m2+2r2+pq2

� c1+c2 = (m1+m2)+2(r1+r2)+p(q1+q2)
�  (c1+c2 mod p)mod 2 = m1+m2 mod 2

� c1.c2 = (m1+2r1).(m2+2r2)+p(q’)
�  (c1.c2 mod p)mod 2 = m1.m2 mod 2

Noise

Noise

 = m1 XOR m2

 = m1 AND m2

Homomorphism?
� c1=m1+2r1+pq1 c2=m2+2r2+pq2
� c1=1+2.5+9.101 c2= 1+2.7+8.101
�  =11+909 = 15+808
� c1.c2=11.15 + 295.101=165 + 295.101

� c1.c2 mod 101 = 165 mod 101 = 64
�  (c1.c2 mod 101) mod 2 = 0 (Incorrect!)

A simple scheme
� Shared secret key: odd number p(=101)
� To encrypt a bit m in {0,1}: (say m=1)
� Choose at random small r(=5), large q(=9)
� Output c = m + 2r + pq= 1 + 10 + 909= 920

� To decrypt c:
� Output m = (c mod p) mod 2

 = (920 mod 101) mod 2 = 11 mod 2 = 1

m = LSB of distance to nearest multiple of p

noise

Noise Problem
� Problem arises when noise becomes

comparable to p
� When this happens, cipher-texts could be

decrypted, and again encrypted with
fresh noise, which is always small

Noise Problem
� Problem arises when noise becomes

comparable to p
� When this happens, cipher-texts could be

decrypted, and again encrypted with
fresh noise, which is always small

� Wouldn’t that compromise privacy?

Need: A Bootstrappable
Scheme
� A scheme which can handle its own

decryption function
�  If such a scheme can be designed, cipher

texts encrypted under one key, can be
encrypted for another level with another
key, and then one level of encryption
removed

Need: A Bootstrappable
Scheme
� A scheme which can handle its own

decryption function
�  If such a scheme can be designed, cipher

texts encrypted under one key, can be
encrypted for another level with another
key, and then one level of encryption
removed

� We will come back to this!

Gentry’s FHE scheme

� KeyGen(λ)
� Encrypt(pk, m)
� Decrypt(sk, m)

� Evaluate(pk, f, c1, … , ct)
� Recrypt(pk2, Dε, sk1, c1)

Parameter Declaration
� Read security parameter λ
� Set N←λ, P ←λ2, Q ←λ5
� Randomly select two integer parameters

0<α<β

Gentry’s FHE scheme
� KeyGen(λ)

� Encrypt(pk, m)
� Decrypt(sk, m)

� Evaluate(pk, f, c1, … , ct)
� Recrypt(pk2, Dε, sk1, c1)

KeyGen(λ)
� Generates pk, sk

� p is a random P-bit odd integer
� Generate a set y={y1, … yβ}:yi ϵ[0, 2)
� For a sparse subset S of size α,
ΣyS= (1/p) mod 2

� sk ← s, where s ={0,1}β is an encoding of S
� pk ← (p, y)

Implementation Technique
� Structure publicKey defined with one

integer (p) and an array (y) of reals for pk.
� Each element is subset solution is set at (1/

p+2(rand() mod α))/α
� Every other element of y is set randomly

Gentry’s FHE scheme
� KeyGen(λ)

� Encrypt(pk, m)

� Decrypt(sk, m)
� Evaluate(pk, f, c1, … , ct)
� Recrypt(pk2, Dε, sk1, c1)

Encrypt(pk, m)
� Generate an N-bit integer m’ such that

m’=m mod 2
� Generate a random Q-bit integer q
� Set c = m’ + (pk.p)*q
� Generate a set z:zi←c*yi mod 2
� Return c ← (c, z)

Implementation Technique
� Required a mod2 function, which can

compute values of reals modulo 2.
� Necessary for post-processing y to

compute z.

Gentry’s FHE scheme
� KeyGen(λ)

� Encrypt(pk, m)
� Decrypt(sk, m)

� Evaluate(pk, f, c1, … , ct)
� Recrypt(pk2, Dε, sk1, c1)

Decrypt(sk, c)
� To return (c mod p) mod 2
� Equivalent to LSB(c) XOR LSB(˪(c/p)˥)
� ˪.˥ returns nearest integer
� Σ(skt*zt) = c{Σ(skt*yt)} = c(1/p) mod 2

Implementation Technique
� Function nearest_int
� Function LSB

Gentry’s FHE scheme
� KeyGen(λ)

� Encrypt(pk, m)
� Decrypt(sk, m)

� Evaluate(pk, f, c1, … , ct)

� Recrypt(pk2, Dε, sk1, c1)

Evaluate(pk, f, c1, …, ct)
� Takes in boolean function with only ANDs

and XORs
� Replaces AND with multiplication
� Replaces XOR with addition
� Returns c ← f(c1, …, ct)

Implementation Technique
� Each ci is of type publicKey.
� Technically, computes c.p ← f(c1.p, …,

ct.p)
� c.y is computed as c.yi ← pk.yi * c.p
� An expression evaluator was developed

using stacks

Expression Evaluator

Expression
E and

array of
values

E[values]

Ep Result

Replace
variables with
values

Convert
from infix to
postfix
format

Evaluate
expression using
a stack

Input

Output

Gentry’s FHE scheme
� KeyGen(λ)

� Encrypt(pk, m)
� Decrypt(sk, m)

� Evaluate(pk, f, c1, … , ct)
� Recrypt(pk2, Dε, sk1, c1)

Recrypt(pk2, D, sk1, c1)
� D is the boolean expression for the

decryption function
� sk1 is a vector of cipher-texts , where

 sk1[i] ← Encrypt(pk2, sk1[i])
� c1 is a cipher-text encrypted under pk1
� Compute c1 : c1[i] ← Encrypt(pk2, <c1>i)
� Return c ← Evaluate(pk2, D, sk1, c1)

Implementation Issues
� Formulation of D using naïve integer

methods
� Published implementations till date

[Gentry’11], [Smart’09] have used lattice
based methods

Timing Measurements
Dimension KeyGen Encrypt Decrypt

23 0.405 ms 0.145 ms 0.125 ms

25 0.421 ms 0.337 ms 3.43 ms

27 0.422 ms 4.2 ms 16.36 ms

29 0.438 ms 33.37 ms 24.54 ms

211 0.437 ms 187.02 ms 89.16 ms

213 0.434 ms 474.29 ms 215.94 ms

215 0.433 ms 0.99 sec 0.5 sec

Short Term Goals
� Generalization of input by writing a

convertor for boolean functions to AND-
XOR form

� Use lattice-based methods to implement
Recrypt

� Extensive testing

Long Term Goals
�  Improve time and memory complexity of

scheme. Current implementations are not
practical

� Explore the possibilities of side-channel
attacks on this scheme

