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The Goal of FHE 

�  I want to delegate processing of my data, 
without giving away access to it. 

-Craig Gentry(2009) 



Application 1 – Cloud 
Computing 
� Data stored on cloud in encrypted form 
� You want to perform SECRET operations 

on the data 
� Encrypt simple queries to _queries_ 
� Send _queries_ to cloud 
� Cloud performs _queries_ on encrypted 

data and sends back encrypted results 
� Decrypt them to get actual results 



Application 2 – Private Google 
Search 
� You don’t want Google to know your 

SECRET queries 
� Submit encrypted queries 
� Get encrypted results 
� Decrypt results 



Application 2 – Private Google 
Search 
� You don’t want Google to know your 

SECRET queries 
� Submit encrypted queries 
� Get encrypted results 
� Decrypt results 



Our Goal(s) 
� Perform operations of data without 

knowing the contents EFFICIENTLY 

� Performing attacks on the existing 
scheme,             
especially SIDE-CHANNEL ATTACKS. 



A simple scheme 
� Shared secret key: odd number p 
� To encrypt a bit m in {0,1}: 
� Choose at random small r, large q 
� Output c = m + 2r + pq 

� To decrypt c: 
� Output m = (c mod p) mod 2 

m = LSB of distance to nearest multiple of p  
 

noise 



A simple scheme 
� Shared secret key: odd number p(=101) 
� To encrypt a bit m in {0,1}: 
� Choose at random small r, large q 
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A simple scheme 
� Shared secret key: odd number p(=101) 
� To encrypt a bit m in {0,1}: (say m=1) 
� Choose at random small r, large q 
� Output c = m + 2r + pq 

� To decrypt c: 
� Output m = (c mod p) mod 2   
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A simple scheme 
� Shared secret key: odd number p(=101) 
� To encrypt a bit m in {0,1}: (say m=1) 
� Choose at random small r(=5), large q(=9) 
� Output c = m + 2r + pq 

� To decrypt c: 
� Output m = (c mod p) mod 2   

  

m = LSB of distance to nearest multiple of p  
 

noise 



A simple scheme 
� Shared secret key: odd number p(=101) 
� To encrypt a bit m in {0,1}: (say m=1) 
� Choose at random small r(=5), large q(=9) 
� Output c = m + 2r + pq= 1 + 10 + 909= 920 

� To decrypt c: 
� Output m = (c mod p) mod 2   

  

m = LSB of distance to nearest multiple of p  
 

noise 



A simple scheme 
� Shared secret key: odd number p(=101) 
� To encrypt a bit m in {0,1}: (say m=1) 
� Choose at random small r(=5), large q(=9) 
� Output c = m + 2r + pq= 1 + 10 + 909= 920 

� To decrypt c: 
� Output m = (c mod p) mod 2   

 = (920 mod 101) mod 2 = 11 mod 2 = 1 

m = LSB of distance to nearest multiple of p  
 

noise 



Homomorphism? 
� c1=m1+2r1+pq1   c2=m2+2r2+pq2 

� c1+c2 = (m1+m2)+2(r1+r2)+p(q1+q2)  
�  (c1+c2 mod p)mod 2 = m1+m2 mod 2 

� c1.c2 = (m1+2r1).(m2+2r2)+p(q’)  
�  (c1.c2 mod p)mod 2 = m1.m2 mod 2 

Noise 

Noise 

 = m1 XOR m2 

 = m1 AND m2 



Homomorphism? 
� c1=m1+2r1+pq1   c2=m2+2r2+pq2  
� c1=1+2.5+9.101   c2= 1+2.7+8.101 
�      =11+909       = 15+808 
� c1.c2=11.15 + 295.101=165 + 295.101 

� c1.c2 mod 101 = 165 mod 101 = 64 
�  (c1.c2 mod 101) mod 2 = 0 (Incorrect!) 



A simple scheme 
� Shared secret key: odd number p(=101) 
� To encrypt a bit m in {0,1}: (say m=1) 
� Choose at random small r(=5), large q(=9) 
� Output c = m + 2r + pq= 1 + 10 + 909= 920 

� To decrypt c: 
� Output m = (c mod p) mod 2   

 = (920 mod 101) mod 2 = 11 mod 2 = 1 

m = LSB of distance to nearest multiple of p  
 

noise 



Noise Problem 
� Problem arises when noise becomes 

comparable to p 
� When this happens, cipher-texts could be 

decrypted, and again encrypted with 
fresh noise, which is always small 



Noise Problem 
� Problem arises when noise becomes 

comparable to p 
� When this happens, cipher-texts could be 

decrypted, and again encrypted with 
fresh noise, which is always small 

� Wouldn’t that compromise privacy?  



Need: A Bootstrappable 
Scheme 
� A scheme which can handle its own 

decryption function 
�  If such a scheme can be designed, cipher 

texts encrypted under one key, can be 
encrypted for another level with another 
key, and then one level of encryption 
removed 



Need: A Bootstrappable 
Scheme 
� A scheme which can handle its own 

decryption function 
�  If such a scheme can be designed, cipher 

texts encrypted under one key, can be 
encrypted for another level with another 
key, and then one level of encryption 
removed 

� We will come back to this! 



Gentry’s FHE scheme 

� KeyGen(λ) 
� Encrypt(pk, m) 
� Decrypt(sk, m) 

� Evaluate(pk, f, c1, … , ct) 
� Recrypt(pk2, Dε, sk1, c1) 



Parameter Declaration 
� Read security parameter λ 
� Set N←λ, P ←λ2, Q ←λ5 
� Randomly select two integer parameters 

0<α<β 



Gentry’s FHE scheme 
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� Recrypt(pk2, Dε, sk1, c1) 

 



KeyGen(λ) 
� Generates pk, sk 

� p is a random P-bit odd integer 
� Generate a set y={y1, … yβ}:yi ϵ[0, 2) 
� For a sparse subset S of size α,                      
ΣyS= (1/p) mod 2 

� sk ← s, where s ={0,1}β is an encoding of S 
� pk ← (p, y) 



Implementation Technique 
� Structure publicKey defined with one 

integer (p) and an array (y) of reals for pk. 
� Each element is subset solution is set at (1/

p+2(rand() mod α))/α 
� Every other element of y is set randomly 



Gentry’s FHE scheme 
� KeyGen(λ) 

� Encrypt(pk, m) 

� Decrypt(sk, m) 
� Evaluate(pk, f, c1, … , ct) 
� Recrypt(pk2, Dε, sk1, c1) 

 



Encrypt(pk, m) 
� Generate an N-bit integer m’ such that     

m’=m mod 2 
� Generate a random Q-bit integer q 
� Set c = m’ + (pk.p)*q 
� Generate a set z:zi←c*yi mod 2 
� Return c ← (c, z) 



Implementation Technique 
� Required a mod2 function, which can 

compute values of reals modulo 2. 
� Necessary for post-processing y to 

compute z. 



Gentry’s FHE scheme 
� KeyGen(λ) 

� Encrypt(pk, m) 
� Decrypt(sk, m) 

� Evaluate(pk, f, c1, … , ct) 
� Recrypt(pk2, Dε, sk1, c1) 

 



Decrypt(sk, c) 
� To return (c mod p) mod 2 
� Equivalent to LSB(c) XOR LSB(˪(c/p)˥) 
� ˪.˥ returns nearest integer 
� Σ(skt*zt) = c{Σ(skt*yt)} = c(1/p) mod 2 



Implementation Technique 
� Function nearest_int  
� Function LSB 



Gentry’s FHE scheme 
� KeyGen(λ) 

� Encrypt(pk, m) 
� Decrypt(sk, m) 

� Evaluate(pk, f, c1, … , ct) 

� Recrypt(pk2, Dε, sk1, c1) 
 



Evaluate(pk, f, c1, …, ct) 
� Takes in boolean function with only ANDs 

and XORs 
� Replaces AND with multiplication 
� Replaces XOR with addition 
� Returns c ← f(c1, …, ct) 



Implementation Technique 
� Each ci is of type publicKey. 
� Technically, computes c.p ← f(c1.p, …, 

ct.p) 
� c.y is computed as c.yi ← pk.yi * c.p 
� An expression evaluator was developed 

using stacks 



Expression Evaluator 

Expression 
E and 

array of 
values 

E[values] 

Ep Result 

Replace 
variables with 
values 

Convert 
from infix to 
postfix 
format 

Evaluate 
expression using 
a stack 

Input 

Output 



Gentry’s FHE scheme 
� KeyGen(λ) 

� Encrypt(pk, m) 
� Decrypt(sk, m) 

� Evaluate(pk, f, c1, … , ct) 
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Recrypt(pk2, D, sk1, c1) 
� D is the boolean expression for the 

decryption function 
� sk1 is a vector of cipher-texts , where  

 sk1[i] ← Encrypt(pk2, sk1[i]) 
� c1 is a cipher-text encrypted under pk1  
� Compute c1 : c1[i] ← Encrypt(pk2, <c1>i) 
� Return c ← Evaluate(pk2, D, sk1, c1) 



Implementation Issues 
� Formulation of D using naïve integer 

methods 
� Published implementations till date 

[Gentry’11], [Smart’09] have used lattice 
based methods 



Timing Measurements 
Dimension KeyGen Encrypt Decrypt 

23 0.405 ms 0.145 ms 0.125 ms 

25 0.421 ms 0.337 ms 3.43 ms 

27 0.422 ms 4.2 ms 16.36 ms 

29 0.438 ms 33.37 ms 24.54 ms 

211 0.437 ms 187.02 ms 89.16 ms 

213 0.434 ms 474.29 ms 215.94 ms 

215 0.433 ms 0.99 sec 0.5 sec 



Short Term Goals 
� Generalization of input by writing a 

convertor for boolean functions to AND-
XOR form 

� Use lattice-based methods to implement 
Recrypt 

� Extensive testing 



Long Term Goals 
�  Improve time and memory complexity of 

scheme. Current implementations are not 
practical 

� Explore the possibilities of side-channel 
attacks on this scheme 


